** An explicit methods
** An implicit methods

Definition: An explicit method is one in which one unknown values in
the (n+1)™ level are specifying in terms of known values in the (n)" level.

Definition: An implicit method is one in which two or more unknown
values in the (n+2)" level are specifying in terms of known values in the
(n)" level.

Now, an explicit method can be reducing from the above general finite
difference representation of the parabolic P.D.E., and may be writing as,
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This expression is calling an explicit method involving four-point
formula.
Other an explicit form can be obtaining as,
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This expression is calling an explicit method involving Six-point formula.
An implicit formula of the parabolic P.D.E. can be deriving as follows;
The finite difference formula u* = Exp(kD*)u’
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This equation is call implicit formula of the parabolic P.D.E. Z—L: :g—lj. It
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Is suggest by O'Brien et.el , which approximate 272 in the (n+1)"time

level instead of the (n)" level.
Crank and Nicolson(1947) proposed a method is valid for all values of r.
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They replaced ZTL: by means of its finite difference representations on the

(n+1)"time level and (n)"time level.
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This equation is call Crank-Nicolson implicit formula of the parabolic
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Exercise2: write down the following parabolic P.D.E. with variable
coefficients
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(1) Zt—u:a(x)g—u (Hint: putL =a(x)D?)
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Note: we can approximate the derivatives (first-order &second-order) by
finite difference depend on the following definition
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Thus, this derivative at point (i, j) can expression as follows,
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From these relations the second derivative can written as follows
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We can derivation these formulas by using Taylor's theorem. Apply
Taylor's expand to the function u at x+Ax and x—Ax, we obtain
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Use these relations to prove above formulas.
Discuss the truncation errors
From equation( 19) , we get
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This is the Forward finite difference scheme .it is of the first-order of Ax.
Similarly, From equation(20) , we have
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This is the Backward finite difference scheme .it is of the first-order of
AX
Subtracting (19) and (20), we obtain
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This is the Central finite difference scheme .it is of the second-order of

(Ax)?
Adding (19) and (20), we get
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This is the Central finite difference scheme .it is of the second-order of
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Derivative boundary conditions

2
For solving parabolic P.D.E 2_1:2272 subject to the initial and

boundary conditions
u(x,00= f(x) for 0<x<1  (where f(x)is known function)
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by using explicit method, we obtain
uin+1 =(1- 2r)uin + r(uin+1 + uin—l)
For i=0=u)™"=@-2ru]+r(u, +u")
Here appear problem in the computation of the recurrence relation exactly
in the term u",. One of the treatments for this problem, one can used
central difference scheme (equation (23)) for the boundary condition
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Similarly, For i=M = uj* =@-2r)uy, +r(uy,,, +uy,_,), such that problem
IS appear in the term u’ ,,s0 by using the same previous way ,we have
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Exercise3:
A bar, with ends at x=0and x=a,with insulated ends, has an
initial
temperature distribution u(x,0) = f(x)
1) Write down the boundary value problem that corresponding to the
physical problem.
2) Approximate the P.D.E. resulting in part(1) by:

a- explicit method b-implicit method c-Crank-Nicolson
method.
Exercise4:
Derive the following expressions:
2 U, +U o —U U, C .
1) 0 U| i+ i-1,j-1 i-1,j+1 i+1,j-1 ,Wthh is Second Order

8x8y|i‘j h 4(AxAyY)
mixed central difference with respect to xandy.

7) Lo RO L TRRET TR

al,; 6ay
difference with respect to y.

i1~ 9, +2U; .5) , which is third order

Two-dimension P.D.E.

(1) the 2D heat equation in the (x, y,t) plane may be written as
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Here we can define the differential operator asL=D? + D?
equation(25) can be written as
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Using the finite difference code; u; =u(x;,y;.t,), approximation of
equation (26) is
u/it = Exp(KL)u;,
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This is explicit scheme for 2D parabolic P.D.E.
(2) Using an explicit method to approximation the2D parabolic P.D.E.
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(3)Use an implicit scheme to approximation the 2D parabolic P.D.E.

Explicit method:
Advantage Relatively simple to set up and program
Disadvantage in terms of above example, for a given Ax,At must be
less than some limit imposed by stability constraints.
In some cases, At must be very small to maintain
stability; this can result in long computer running
times to make calculations over a given interval of t.

Implicit method:

Advantage  stability can be maintained overt much large values of At,
hence using considerable fewer time steps to make
calculations over a given interval of t. This result in
less computer time.

Disadvantage more complicated to set up and program

Disadvantage Since massive matrix manipulations are usually required
at each time step, the computer time per time step is
much larger than in the explicit approach.

Disadvantage Since large Atcan be taken, the truncation error is large,
and the use of implicit methods to follow the exact
transient (time variation of the independent variable)
may not be as accurate as an explicit approach.

However, for a time- dependent solution in which the
steady state is the desired result, this relative time wise
Inaccuracy is not important.



